Abstract

A distributed permutation flowshop scheduling problem (DPFSP) with peak power consumption is addressed in this work. The instantaneous energy consumption of each factory cannot exceed a threshold. First, a mathematical model is developed to describe the concerned problem. Second, an improved artificial bee colony (IABC) algorithm is proposed. Based on problem-specific knowledge, three new solution generation operators, e.g., shift, swap, and speed adjust, are designed for employ bees and onlooker bees. A local search operation is developed to improve the quality of current best-known solution in each iteration. 450 instances are solved to evaluate the performance of IABC via comparing to seven state-of-the-art algorithms. The average relative percentage increase (ARPI) of IABC ranks 1 among all compared algorithms. The results and discussions show that the proposed IABC algorithm has strong competitiveness for solving the DPFSP with peak power consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call