Abstract

In this paper, we provide an explicit construction of weight $0$ meromorphic modular forms. Following work of Petersson, we build these via Poincar\'e series. There are two main aspects of our investigation which differ from his approach. Firstly, the naive definition of the Poincar\'e series diverges and one must analytically continue via Hecke's trick. Hecke's trick is further complicated in our situation by the fact that the Fourier expansion does not converge everywhere due to singularities in the upper half-plane so it cannot solely be used to analytically continue the functions. To explain the second difference, we recall that Petersson constructed linear combinations from a family of meromorphic functions which are modular if a certain principal parts condition is satisfied. In contrast to this, we construct linear combinations from a family of non-meromorphic modular forms, known as polar harmonic Maass forms, which are meromorphic whenever the principal parts condition is satisfied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.