Abstract

ABSTRACTA simple approach was applied to probe into the situation of interfacial adhesion in the compatibilized ternary polymer blends with core/shell morphology. The performance of compatibilization was discussed in terms of thermal, rheological, and mechanical properties analyses for blends prepared through different mixing strategies for which maleic anhydride‐grafted high‐density polyethylene (HDPE‐g‐MAH) could be localized at the interface of HDPE/poly(ethylene‐co‐vinyl alcohol) copolymer (EVOH) or HDPE/polyamide 6 (PA‐6) in their ternary blends. Two mixing strategies, one simultaneously (one‐step or selective) and two sequentially (two‐step or dictated), were performed, compared, and discussed. It was found that mixing policy (dictated or selective) significantly changes the interfacial adhesion, as signaled by variations in rheological and thermal properties. In the case of mechanical properties, facilitation of stress transfer across the matrix/shell/core interfaces was detected by calculation of semi‐experimental models' coefficients. It was found that one‐step mixing or selective localization of HDPE‐g‐MAH helps in accumulation of more compatibilizer molecules at the interface HDPE/EVOH or EVOH/PA‐6. By contrast, addition of compatibilizer to minor phase (masterbatch of EVOH and PA‐6) or to HDPE matrix alone in case of two‐step blending causes imperfect stress transfer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45503.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.