Abstract

We present here a probabilistic approach to the generation of new polyno- mials in two discrete variables. This extends our earlier work on the 'classical' orthogonal polynomials in a previously unexplored direction, resulting in the discovery of an exactly soluble eigenvalue problem corresponding to a bivariate Markov chain with a transition kernel formed by a convolution of simple binomial and trinomial distributions. The solution of the relevant eigenfunction problem, giving the spectral resolution of the kernel, leads to what we believe to be a new class of orthogonal polynomials in two discrete variables. Possibilities for the extension of this approach are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.