Abstract

The response analysis of the composite structural-acoustic systems with multiple types of epistemic uncertainties is investigated in this paper. Based on the available information for the uncertain parameters, the multiple types of epistemic uncertainties refer to probability-box (p-box) variables, evidence variables and interval variables. The proposed development focused on an efficient computation of the output bounds of the cumulative distribution function of the sound pressure response when dealing with the combination of p-box variables, evidence variables and interval variables. To reduce the involved computational cost but ensuring the accuracy, all evidence variables and interval variables are transformed into p-box-form variables. Then, a modified interval Monte Carlo method (MIMCM) is developed to estimate the bounds of the cumulative distribution function of the system response. In MIMCM, a sparse Gegenbauer polynomial surrogate model is established with focus on the efficiency and accuracy and then applied for the interval analysis in each iteration. A numerical example and two engineering examples with respect to multiple types of epistemic uncertainties are carried out to illustrate the accuracy and efficiency of the MIMCM by conducting comparisons with traditional algorithms. The ability of the proposed method for risk and conservative reliability analysis is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.