Abstract
We investigated the usefulness of probabilistic Markov chain Monte Carlo (MCMC) methods for solving the magnetoencephalography (MEG) inverse problem, by using an algorithm composed of the combination of two MCMC samplers: Reversible Jump (RJ) and Parallel Tempering (PT). The MEG inverse problem was formulated in a probabilistic Bayesian approach, and we describe how the RJ and PT algorithms are fitted to our application. This approach offers better resolution of the MEG inverse problem even when the number of source dipoles is unknown (RJ), and significant reduction of the probability of erroneous convergence to local modes (PT). First estimates of the accuracy and resolution of our composite algorithm are given from results of simulation studies obtained with an unknown number of sources, and with white and neuromagnetic noise. In contrast to other approaches, MCMC methods do not just give an estimation of a "single best" solution, but they provide confidence interval for the source localization, probability distribution for the number of fitted dipoles, and estimation of other almost equally likely solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.