Abstract

It is vital to analyse ship collision risk for preventing collisions and improving safety at sea. The state-of-the-art of ship collision risk analysis focuses on encountering conflict between ship pairs, subject to a strong assumption of the ships having no/little spatiotemporal motion uncertainty. This paper proposes a probabilistic conflict detection approach to estimate potential collision risk of various multi-vessel encounters, in which the spatiotemporal-dependent patterns of ship motions are newly taken into account through quantifying the trajectory uncertainty distributions using AIS data. The estimation accuracy and efficiency are assured by employing a two-stage Monte Carlo simulation algorithm, which provides the quantitative bounds on the approximation accuracy and allows for a fast estimation of conflict criticality. Several real experiments are conducted using the AIS-based trajectory data in Ningbo-Zhoushan Port to demonstrate the feasibility and superiority of the proposed new approach. The results show that it enables the effective detection of collision risk timely and reliably in a complicated dynamic situation. They therefore provide valuable insights on ship collision risk prediction as well as the formulation of risk mitigation measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call