Abstract
This article specifically aims to prove the superiority of the proposed moth swarm algorithm (MSA) in view of wind-thermal coordination. In the present article, a probabilistic optimal power flow (POPF) problem is formulated to reflect the probabilistic nature of wind. Modelling of doubly fed induction generator (DFIG) is included in the proposed POPF to represent the wind energy conversion system (WECS). To reduce DFIG imposed deviation of bus voltage ancillary reactive power support is considered. Moreover, three different optimization techniques, namely, MSA, biogeography-based optimization (BBO), and particle swarm optimization (PSO) are independently applied for the minimization of active power generation cost for wind-thermal coordination, considering different instances in case of IEEE 30-bus and IEEE 118-bus system. From the simulation results, it is confirmed and validated that the proposed MSA performs considerably better than BBO and PSO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Energy Optimization and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.