Abstract
Hearing Aid (HA) algorithms need to be tuned ("fitted") to match the impairment of each specific patient. The lack of a fundamental HA fitting theory is a strong contributing factor to an unsatisfying sound experience for about 20% of hearing aid patients. This paper proposes a probabilistic modeling approach to the design of HA algorithms. The proposed method relies on a generative probabilistic model for the hearing loss problem and provides for automated inference of the corresponding (1) signal processing algorithm, (2) the fitting solution as well as a principled (3) performance evaluation metric. All three tasks are realized as message passing algorithms in a factor graph representation of the generative model, which in principle allows for fast implementation on hearing aid or mobile device hardware. The methods are theoretically worked out and simulated with a custom-built factor graph toolbox for a specific hearing loss model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.