Abstract

<p><span>River networks have been studied in geosciences and hydrology for many theoretical and practical purposes. Self-organization into self-similar tree-like network patterns is observed in many natural phenomena including river networks, blood vessels, vascular organization in plants, lightning etc. River networks self-organize into tree-like network patterns as a result of complex landscape evolution processes. All of these patterns follow certain statistical scaling laws. There have been attempts to explain river network evolution, but it is still unclear how networks self-organize into such patterns. These power-law scaling relationships mainly include Hack’s law, exceeding probability distribution for contributing area and upstream length. Although various models exist in the literature, many questions related to river-network evolution are yet to be answered. In particular, the existing models try little to explain the diversity of network characteristics. We propose a new modeling framework that explains drainage network evolution considering certain key physical processes associated with randomness. The model follows the growth of drainage networks in the headward direction based on probabilistic decisions. The model comprises two free parameters and is demonstrated using a planar matrix. The simulation results show the formation of tree-like drainage networks that exhibit power-law scaling relationships as observed in natural river networks. Furthermore, the model parameters provide flexibility to generate networks with different shapes and characteristics.</span></p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.