Abstract
Several theoretical publications on the Dirac equation published during the last decades have shown that, an interpretation is possible, which ascribes the origin of electron spin and magnetic moment to an autonomous circular motion of the point-like charged particle around a fixed centre. In more recent publications an extension of the original so called “Zitterbewegung Interpretation” of quantum mechanics was suggested, in which the spin results from an average of instantaneous spin vectors over a Zitterbewegung period. We argue that, the corresponding autonomous motion of the electron should, if it is real, determine non-relativistic spin measurements. Such a direct connection with the established formal quantum mechanical description of spin measurements, into which spin is introduced as a “non-classical” quantity has, to our knowledge, not been reported. In the present work we show that, under certain “model assumptions” concerning the proposed autonomous motion, results of spin measurements, including measurements of angular correlations in singlet systems, can indeed be correctly described using classical probabilities. The success of the model is evidence for the “reality” of the assumed autonomous motion. The resulting model violates the Bell—inequalities to the same extent as quantum mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.