Abstract

Electromagnetic inverse scattering (EMIS) is a noninvasive examination tool, which holds the promising potential in science, engineering, and military applications. In contrast to conventional tomography techniques, the inverse scattering is a quantitative superresolution imaging method since it is capable of accommodating more realistic interactions between the wavefield and the probed scene. In this paper, a full probabilistic formulation of the EMIS is presented for the first time, which is then solved by applying the well-known expectation maximization method. Afterward, the concept of the complex-valued alternating direction method of multipliers has been proposed as an alternative approach to solve the resulting nonlinear optimization problem. Finally, exemplary numerical and experimental results are provided to validate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.