Abstract

In this paper we will present a language-independent probabilistic model which can automatically generate stemmers. Stemmers can improve the retrieval effectiveness of information retrieval systems, however the designing and the implementation of stemmers requires a laborious amount of effort due to the fact that documents and queries are often written or spoken in several different languages. The probabilistic model proposed in this paper aims at the development of stemmers used for several languages. The proposed model describes the mutual reinforcement relationship between stems and derivations and then provides a probabilistic interpretation. A series of experiments shows that the stemmers generated by the probabilistic model are as effective as the ones based on linguistic knowledge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.