Abstract
AbstractThe role of gesture recognition is significant in areas like human‐computer interaction, sign language, virtual reality, machine vision, etc. Among various gestures of the human body, hand gestures play a major role to communicate nonverbally with the computer. As the hand gesture is a continuous pattern with respect to time, the hidden Markov model (HMM) is found to be the most suitable pattern recognition tool, which can be modeled using the hand gesture parameters. The HMM considers the speeded up robust feature features of hand gesture and uses them to train and test the system. Conventionally, the Viterbi algorithm has been used for training process in HMM by discovering the shortest decoded path in the state diagram. The recursiveness of the Viterbi algorithm leads to computational complexity during the execution process. In order to reduce the complexity, the state sequence analysis approach is proposed for training the hand gesture model, which provides a better recognition rate and accuracy than that of the Viterbi algorithm. The performance of the proposed approach is explored in the context of pattern recognition with the Cambridge hand gesture data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.