Abstract

This study aims to develop a probabilistic rainfall threshold estimation model for shallow landslides (PRTE_LS) in order to quantify its reliability while being affected by uncertainties in the rainfall characteristics and soil properties. The rainfall characteristics include the rainfall duration, depth and storm patterns in which their uncertainties result from temporal variation. The effective cohesion of soil, the unit weight of soil, the angle of internal friction, hydraulic conductivity and hydraulic diffusivity are the soil properties represented as the soil parameters in the TRIGRS model in which uncertainties are attributed to spatial variation. After analyzing the sensitivity of rainfall characteristics and TRIGRS parameters to the estimation of rainfall thresholds, the maximum rainfall intensity, storm pattern and soil parameters (soil cohesion, soil friction angle and total unit weight of soil) are retreated as uncertainty factors used in the model development. The proposed PRTE_LS model is used for the reliability assessment of the issued rainfall thresholds in the Jhoukou River watershed, southern Taiwan, to demonstrate its applicability. The results indicate that the corresponding exceedance probability (i.e., underestimated risk) approximates 0.1 on average. In other words, its reliability reaches 0.9. However, issued rainfall thresholds with high reliability might hardly achieve the goal of early warning because shallow landslides can possibly happen before the actual rainfall amount exceeds the threshold. Consequently, the proposed PRTE_LS model can modify issued rainfall thresholds with the specific occurrence probability under the critical safety factors and warning durations being considered. As a result, the proposed PRTE_LS can not only quantify the reliability of the issued rainfall thresholds, but its results can also be referred to in modifying the issued thresholds in order to enhance the early-warning performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.