Abstract
Trust is an extremely helpful construct when reasoning under uncertainty. Thus, being able to logically formalize the concept in a suitable language is important. However, doing so is problematic for three reasons. First, in order to keep track of the contextual nature of trust, situation trackers are required inside the language. Second, in order to produce trust estimations, agents rely on evidence personally gathered or reported by other agents; this requires elements in the language that can track which agents are used as referrals and how much weight is placed on their opinions. Finally, trust is subjective in nature, thus, personal thresholds are needed to track the trust-propensity of different evaluators. In this paper we propose an interpretation of a probabilistic modal language à la Hennessy-Milner in order to capture a context-aware quantitative notion of trust based on evidence. We also provide an axiomatization for the language and prove soundness, completeness, and decidability results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.