Abstract

Consider a Navier-Stokes incompressible turbulent fluid in R2. Let x(t) denote the position coordinate of a moving vortex with initial circulation Γ0 > 0 in the fluid, subject to a force F. Define x(t) as a stochastic process with continuous sample paths described by a stochastic differential equation. Assuming a suitable notion of weak rotationality, it is shown that the stochastic equation is equivalent to a linear partial differential equation for the complex function ψ, i∂ψ/∂t = [-Γ0Δ + F] ψ, where |ψ|2 = ρ(x,t), ρ being the probability density function of finding the vortex centre in position x at time t.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.