Abstract
We explore the problem of reconstructing an image from a bag of square, non-overlapping image patches, the jigsaw puzzle problem. Completing jigsaw puzzles is challenging and requires expertise even for humans, and is known to be NP-complete. We depart from previous methods that treat the problem as a constraint satisfaction problem and develop a graphical model to solve it. Each patch location is a node and each patch is a label at nodes in the graph. A graphical model requires a pairwise compatibility term, which measures an affinity between two neighboring patches, and a local evidence term, which we lack. This paper discusses ways to obtain these terms for the jigsaw puzzle problem. We evaluate several patch compatibility metrics, including the natural image statistics measure, and experimentally show that the dissimilarity-based compatibility - measuring the sum-of-squared color difference along the abutting boundary - gives the best results. We compare two forms of local evidence for the graphical model: a sparse-and-accurate evidence and a dense-and-noisy evidence. We show that the sparse-and-accurate evidence, fixing as few as 4 - 6 patches at their correct locations, is enough to reconstruct images consisting of over 400 patches. To the best of our knowledge, this is the largest puzzle solved in the literature. We also show that one can coarsely estimate the low resolution image from a bag of patches, suggesting that a bag of image patches encodes some geometric information about the original image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.