Abstract
In many deployments, computer systems are underutilized -- meaning that applications have performance requirements that demand less than full system capacity. Ideally, we would take advantage of this under-utilization by allocating system resources so that the performance requirements are met and energy is minimized. This optimization problem is complicated by the fact that the performance and power consumption of various system configurations are often application -- or even input -- dependent. Thus, practically, minimizing energy for a performance constraint requires fast, accurate estimations of application-dependent performance and power tradeoffs. This paper investigates machine learning techniques that enable energy savings by learning Pareto-optimal power and performance tradeoffs. Specifically, we propose LEO, a probabilistic graphical model-based learning system that provides accurate online estimates of an application's power and performance as a function of system configuration. We compare LEO to (1) offline learning, (2) online learning, (3) a heuristic approach, and (4) the true optimal solution. We find that LEO produces the most accurate estimates and near optimal energy savings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.