Abstract

Different sources of uncertainty exist in climate change impacts projection. This study aims to propose a framework to deal with the various sources of uncertainties involved in hydro-climate projections of Zayandeh-Rud River Basin with area of 26,917 km2 in Central Iran. The Bayesian model averaging (BMA) was here used through two distinct approaches for weighting the hydrologic outputs (App. I) as well as the global climate models (GCMs) (App. II) based on their abilities to simulate the baseline period. The results showed that different GCMs have different abilities in estimating the hydro-climatic variables and the application of uncertainty analysis is necessary for climate change studies. Application of the BMA can significantly reduce the errors in historical runoff prediction. Although App. I showed a better performance of generating the stream flow time series during the baseline period, the App. II approach has an acceptable ability in different months. The findings of flow duration curves under both approaches revealed that App. II is more appropriate to deal with uncertainty of hydro-climate projection especially in arid and semi-arid regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call