Abstract

By enabling consumer products to be produced on demand and eliminating waste caused by excessive production and transportation, 3D Printing Cloud Services (3DPCSs) are increasingly welcomed by non-professional customers. With more and more 3D printers becoming available on various 3DPCS platforms, the evaluation and selection problem of 3DPCS has attracted much attention for both novices and experienced users. In this paper, we propose a probabilistic-based extendable quantitative evaluation method for 3DPCS evaluation. This method combines the advantages of the information transformation technique, the multinomial distribution probabilistic model, and the uncertainty based weighting method. Evaluation factors, the major attributes that significantly affect the performance of a 3DPCS, are modeled using probabilistic models. At the same time, historical service data is introduced to dynamically identify and update the evaluation factors. Based on these parameters, the proposed quantitative evaluation method can support the evaluation and comparison of 3DPCSs. Numerical simulation experiments are designed and implemented. The corresponding results verify the effectiveness of the proposed evaluation model. The presented evaluation method can serve as the basis of service evaluation and selection on a 3DPCS platform. Although the focus of this work is on 3DPCS, the idea can apply to other types of cloud manufacturing services.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call