Abstract

We study systems of parameters over finite fields from a probabilistic perspective, and use this to give the first effective Noether normalization result over a finite field. Our central technique is an adaptation of Poonen's closed point sieve, where we sieve over higher dimensional subvarieties, and we express the desired probabilities via a zeta function-like power series that enumerates higher dimensional varieties instead of closed points. This also yields a new proof of a recent result of Gabber-Liu-Lorenzini and Chinburg-Moret-Bailly-Pappas-Taylor on Noether normalizations of projective families over the integers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.