Abstract
Many problems in natural language processing, data mining, information retrieval, and bioinformatics can be formalized as string transformation, which is a task as follows. Given an input string, the system generates the $k$ most likely output strings corresponding to the input string. This paper proposes a novel and probabilistic approach to string transformation, which is both accurate and efficient. The approach includes the use of a log linear model, a method for training the model, and an algorithm for generating the top $k$ candidates, whether there is or is not a predefined dictionary. The log linear model is defined as a conditional probability distribution of an output string and a rule set for the transformation conditioned on an input string. The learning method employs maximum likelihood estimation for parameter estimation. The string generation algorithm based on pruning is guaranteed to generate the optimal top $k$ candidates. The proposed method is applied to correction of spelling errors in queries as well as reformulation of queries in web search. Experimental results on large scale data show that the proposed approach is very accurate and efficient improving upon existing methods in terms of accuracy and efficiency in different settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.