Abstract

We propose a new approach to mean field games with major and minor players. Our formulation involves a two player game where the optimization of the representative minor player is standard while the major player faces an optimization over conditional McKean–Vlasov stochastic differential equations. The definition of this limiting game is justified by proving that its solution provides approximate Nash equilibriums for large finite player games. This proof depends upon the generalization of standard results on the propagation of chaos to conditional dynamics. Because it is of independent interest, we prove this generalization in full detail. Using a conditional form of the Pontryagin stochastic maximum principle (proven in the Appendix), we reduce the solution of the mean field game to a forward–backward system of stochastic differential equations of the conditional McKean–Vlasov type, which we solve in the linear quadratic setting. We use this class of models to show that Nash equilibriums in our formulation can be different from those originally found in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.