Abstract

This paper presents an in-depth study of classification of transients in power systems using two pattern classification methods, namely the maximum-likelihood, and the probabilistic neural networks. These methods, which stem from the Bayes rule, aim at estimating the underlying probability density functions that are required by the Bayes rule, but are often unavailable readily. The paper presents the mathematical foundations of classification using these two methods, followed by their implementation for classification of three types of transients, namely three-phase faults, breaker operations and capacitor switchings. Features used in this study are obtained using the wavelet and multifractal analyses of transient waveforms

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.