Abstract

In this paper, the authors pursue probabilistic aggregate dynamical models for n identical induction machines connected to a bus, capturing the effect of different mechanical inputs to the individual machines. They explore model averaging and review in detail four procedures for linear models. They describe linear systems depending upon stochastic parameters, and develop a theoretical justification for a very simple and reasonably accurate averaging method. They then extend this to the nonlinear model. Finally, they use a recently introduced notion of the stochastic norm to describe a cluster of induction machines undergoing multiple simultaneous parametric variations, and obtain useful and very mildly conservative bounds on eigenstructure perturbations under multiple simultaneous parametric variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.