Abstract
This paper is concerned with the model following problem of Markovian jump linear systems (MJLSs), which suffer from stochastic uncertainties and actuator saturation. By applying a probabilistic approach based on particles, a sequence of control inputs is designed to guarantee that the model following error remains within a desired region in a certain probability, as well as the control cost is optimal. Motivated by this, the stochastic control problem is represented by chance constrained programming, and approximated as a determinate optimization one, which is solved by mixed integer linear programming (MILP). Furthermore, an improved particle control approach is proposed to reduce the computation complexity. The effectiveness of this improved approach is demonstrated by an example along with complexity comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.