Abstract

Fracture toughness values are often influenced by specimen thickness and they indicate generally decreasing toughness with increasing thickness. In the present paper, a probabilistic analysis has been carried out by using various kinds of toughness data in order to clarify the applicability of the weakest link model to thickness effect in fracture toughness. Moreover, a new statistical method is proposed for determining fracture toughness distribution, which is necessary for the above analysis, with taking the temperature dependency of fracture toughness into account. Thickness effect in fracture toughness is brought about by its statistical nature and the weakest link model can be applied to evaluate the thickness effect for both steel plate and its welds with heterogeneity in toughness. This thickness effect is considerably affected by Weibull shape parameter and the probability of cleavage fracture for the material. The statistical method proposed newly in this paper is sufficiently applicable and superior to the conventional method. By using this new method, Weibull parameters at a temperature of interest can be determined with much the same reliability as in the conventional method, and also Weibull parameters at lower and higher temperatures can be obtained with a certain confidence depending on the number of specimens tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call