Abstract
In the earlier work, Knuth present an algorithm to decrease the coefficient growth in the Euclidean algorithm of polynomials called subresultant algorithm. However, the output polynomials may have a small factor which can be removed. Then later, Brown of Bell Telephone Laboratories showed the subresultant in another way by adding a variant called 𝜏 and gave a way to compute the variant. Nevertheless, the way failed to determine every𝜏 correctly. In this paper, we will give a probabilistic algorithm to determine the variant 𝜏 correctly in most cases by adding a few steps instead of computing 𝑡(𝑥) when given 𝑓(𝑥) and𝑔(𝑥) ∈ ℤ[𝑥], where 𝑡(𝑥) satisfies that 𝑠(𝑥)𝑓(𝑥) + 𝑡(𝑥)𝑔(𝑥) = 𝑟(𝑥), here 𝑡(𝑥), 𝑠(𝑥) ∈ ℤ[𝑥]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Mathematics and Sciences An International Journal (MathSJ)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.