Abstract

In-stream big data processing is an important part of big data processing. Proactive decision support systems can predict future system states and execute some actions to avoid unwanted states. In this paper, we propose a proactive decision support system for online event streams. Based on Complex Event Processing (CEP) technology, this method uses structure varying dynamic Bayesian network to predict future events and system states. Different Bayesian network structures are learned and used according to different event context. A networked distributed Markov decision processes model with predicting states is proposed as sequential decision making model. A Q-learning method is investigated for this model to find optimal joint policy. The experimental evaluations show that this method works well for congestion control in transportation system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.