Abstract

One of the most important challenges of wireless sensor networks is controlling network congestion and transmitting data in a way that improves the quality of service (QoS) parameters. Thus, it increases network performance and reduces energy consumption. Energy consumption increases due to various reasons, such as unsuccessful delivery of packets to the receiver, congestion in the network, retransmission of packets, delay in delivering packets to the base station, and so on. Given the importance of some data in the field of health, congestion should be avoided and secure data transmission should be ensured. This study divides the collected data into two groups based on their intrinsic characteristics by presenting a congestion management protocol: (1) critical data and (2) non-critical data. The proposed protocol provides a dynamic routing algorithm based on the TOPSIS model for non-critical data transmission. In addition, an algorithm for transmitting critical data through the shortest possible path is also provided based on support vector machines (SVMs). This improves the network performance through using multi-classification that is obtained from SVMs. The simulation results indicate that the proposed method works better than other methods and leads to better performance in delay, network performance, and power consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call