Abstract

To ensure the freshness of information in wireless communication systems, a new performance metric named the age of information (AoI) is being adopted in the design of transmission schedulers. However, most AoI schedulers rely on iterative optimization methods, which struggle to adapt to real-time changes, particularly in real-world 5G deployment scenarios, where network conditions are highly dynamic. In addition, they neglect the impact of consecutive AoI deadline violations, which result in prolonged information deficits. To address these limitations, we present a 5G scheduler that can cope with dynamic network conditions, with the aim of minimizing the long-term average AoI under deadline constraints. Specifically, we consider a dense urban massive machine-type communication (mMTC) scenario in which numerous Internet of Things (IoT) devices frequently join or leave the network under time-varying channel conditions. To facilitate real-time adaptation, we develop a per-slot scheduling method that makes locally optimal decisions for each slot without requiring extensive iterations. In addition, we combine the per-slot scheduling method with a priority-rule scheduling algorithm to satisfy the stringent timing requirements of 5G. The simulation results show that the proposed scheduler reduces the average AoI by 10%, deadline violation rate by 40%, and consecutive violation rate by 20% approximately compared with other AoI schedulers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.