Abstract
The Large Eddy Simulation (LES) of two-phase flows with resolved scale interfaces is investigated through the a priori filtering of Direct Numerical Simulations (DNS) of one-fluid and multifield models. A phase inversion benchmark [1–4] is considered highlighting many coalescence and interface rupture events in a kind of atomization process. The order of magnitude of specific two-phase subgrid LES terms is first considered with the two modeling approaches. Then, different existing models such as Smagorinsky [5], Wall-Adapting Local Eddy-viscosity (WALE) model [6], Bardina [7], Mixed [8] and Approximate Deconvolution Model (ADM) [9] are used to account for two-phase subgrid effects. These models are compared to filtered DNS results. The main conclusion concerning a priori LES filtering is that the inertia term is not predominant in two-phase flows with fragmentation and rupture of interface. This conclusion is different from that of the studies of [3, 10–13]. Concerning LES models, functional modeling do not correlate to filtered DNS results whereas structural approaches do. Bardina and ADM are clearly the good LES framework to consider for two-phase flows with resolved scale interfaces. ADM is clearly better than Bardina in our study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.