Abstract
AbstractWe consider a scalar wave equation with nonseparable spatial scales. If the solution of the wave equation smoothly depends on some global fields, then we can utilize the global fields to construct multiscale finite element basis functions. We present two finite element approaches using the global fields: partition of unity method and mixed multiscale finite element method. We derive a priori error estimates for the two approaches and theoretically investigate the relation between the smoothness of the global fields and convergence rates of the approximations for the wave equation. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.