Abstract
We are concerned with A priori estimates for the obstacle problem of a wide class of fully nonlinear equations on Riemannian manifolds. We use new techniques introduced by Bo Guan and derive new results for A priori second order estimates of its singular perturbation problem under fairly general conditions. By approximation, the existence of a $C^{1,1}$ viscosity solution is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.