Abstract

In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to be irrotational. In addition, we show that our estimates are in fact uniform in the sound speed k. As a consequence, we obtain convergence of solutions of compressible Euler equations with a free boundary to solutions of the incompressible equations, generalizing the result of Ebin to when you have a free boundary. In the incompressible case our energies reduce to those in Christodoulou and Lindblad, and our proof in particular gives a simplified proof of their estimates with improved error estimates. Since for an incompressible irrotational liquid with free surface there are small data global existence results, our result leaves open the possibility of long‐time existence also for slightly compressible liquids with a free surface.© 2017 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.