Abstract

We derive a priori estimates for the compressible free-boundary Euler equations with surface tension in three spatial dimensions in the case of a liquid. These are estimates for local existence in Lagrangian coordinates when the initial velocity and initial density belong to $H^3$, with an extra regularity condition on the moving boundary, thus lowering the regularity of the initial data. Our methods are direct and involve two key elements: the boundary regularity provided by the mean curvature, and a new compressible Cauchy invariance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.