Abstract

In this article we discuss a priori error estimates for Galerkin finite element discretizations of optimal control problems governed by linear parabolic equations and subject to inequality control constraints. The space discretization of the state variable is done using usual conforming finite elements, whereas the time discretization is based on discontinuous Galerkin methods. For different types of control discretizations we provide error estimates of optimal order with respect to both space and time discretization parameters taking into account the spatial and the temporal regularity of the optimal solution. For the treatment of the control discretization we discuss different approaches extending techniques known from the elliptic case. For detailed proofs and numerical results we refer to [18, 19].KeywordsOptimal Control ProblemSpace DiscretizationDiscontinuous Galerkin MethodControl ConstraintTemporal RegularityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.