Abstract

An extensive a priori analysis has been carried out on data from Direct numerical simulation of fully developed heated turbulent pipe flow at high molecular Prandtl numbers Pr=10/20, testing three popular modelling candidates for subgrid-scale closure in Large-Eddy simulation (LES). Aside from assessing the models’ capabilities to describe quantitatively the unresolved turbulent fluxes, a special focus is also put on the role of the numerical error, which arises from the discretization of the filtered advective fluxes on a coarse LES grid. The present analysis extends here previous studies on subgrid-scale momentum transport in a isothermal mixing layer and channel flow carried out by Brandt (J Numer Methods Fluids 51: 635–657, 2006) and Vreman et al. (J Eng Math 29: 299–327, 1995), respectively, to the subgrid-scale transport of heat at high Prandtl numbers. The statistical dependence between the individual contributions (resolved, subgrid-scale, numerical discretization error) constituting the filtered advective flux divergence in the LES formulation is investigated as well, in terms of corresponding cross-correlations. The sensitivity of the tested sgs-models to a grid refinement is further examined performing also a posteriori LES, where the basically more sophisticated candidates turn out to be more demanding in terms of required grid resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.