Abstract

An extensive a priori analysis has been carried out on data from Direct numerical simulation of fully developed heated turbulent pipe flow at high molecular Prandtl numbers Pr=10/20, testing three popular modelling candidates for subgrid-scale closure in Large-Eddy simulation (LES). Aside from assessing the models’ capabilities to describe quantitatively the unresolved turbulent fluxes, a special focus is also put on the role of the numerical error, which arises from the discretization of the filtered advective fluxes on a coarse LES grid. The present analysis extends here previous studies on subgrid-scale momentum transport in a isothermal mixing layer and channel flow carried out by Brandt (J Numer Methods Fluids 51: 635–657, 2006) and Vreman et al. (J Eng Math 29: 299–327, 1995), respectively, to the subgrid-scale transport of heat at high Prandtl numbers. The statistical dependence between the individual contributions (resolved, subgrid-scale, numerical discretization error) constituting the filtered advective flux divergence in the LES formulation is investigated as well, in terms of corresponding cross-correlations. The sensitivity of the tested sgs-models to a grid refinement is further examined performing also a posteriori LES, where the basically more sophisticated candidates turn out to be more demanding in terms of required grid resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.