Abstract

Abstract In this article, a priori and a posteriori estimates of conforming and expanded mixed finite element methods for a Kirchhoff equation of elliptic type are derived. For the expanded mixed finite element method, a variant of Brouwer’s fixed point argument combined with a monotonicity argument yields the well-posedness of the discrete nonlinear system. Further, a use of both Helmholtz decomposition of L 2 $L^{2}$ -vector valued functions and the discrete Helmholtz decomposition of the Raviart–Thomas finite elements helps in a crucial way to achieve optimal a priori as well as a posteriori error bounds. For both conforming and expanded mixed form, reliable and efficient a posteriori estimators are established. Finally, the numerical experiments are performed to validate the theoretical convergence rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call