Abstract

Modeling soot formation in turbulent nonpremixed combustion is a difficult problem. Unlike most gaseous combustion species, soot lacks a strong state relationship with the mixture fraction due to unsteady formation rates which overlap transport timescales, and strong differential diffusion between gaseous species and soot. The conditional moment closure model (CMC) has recently been applied to the problem of turbulent soot formation. A challenge in CMC modeling is the treatment of differential diffusion. Three-dimensional direct numerical simulation (DNS) of a nonpremixed ethylene jet flame with soot formation has been performed using a 19 species reduced ethylene mechanism and a four-step, three-moment, semi-empirical soot model. The DNS provides full resolution of the turbulent flow field and is used to perform a-priori analysis of a recent CMC model derived from the joint scalar PDF transport equation. Unlike other approaches, this CMC model does not require additional transport equations to treat differentially diffusing species. A budget of the terms of the CMC equation for both gaseous species and soot is presented. In particular, exact expressions for unclosed terms are compared to typical closure models for scalar dissipation, cross-dissipation, differential diffusion, and reactive source terms. The differential diffusion model for gaseous species is found to be quite accurate, while that for soot requires an additional model for the residual term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.