Abstract

Abstract Nonlinear elastic models are widely used to describe the elastic response of crystalline solids, for example, the well-known Cauchy–Born model. While the Cauchy–Born model only depends on the strain, effects of higher-order strain gradients are significant and higher-order continuum models are preferred in various applications such as defect dynamics and modeling of carbon nanotubes. In this paper we rigorously derive a higher-order nonlinear elasticity model for crystals from its atomistic description in one dimension. We show that, compared to the second-order accuracy of the Cauchy–Born model, the higher-order continuum model in this paper is of fourth-order accuracy with respect to the interatomic spacing in the thermal dynamic limit. In addition we discuss the key issues for the derivation of higher-order continuum models in more general cases. The theoretical convergence results are demonstrated by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call