Abstract

A simple procedure for designing a sinusoidally-modulated reactance surface (SMRS) that radiates at an arbitrary off-broadside angle is outlined. The procedure allows for nearly independent control of the leakage and phase constants along the surface. Printing an array of metallic strips over a grounded dielectric substrate is discussed as a way to practically implement the theoretical SMRS. A method of mapping the gaps between metallic strips to a desired surface impedance is presented as an efficient alternative to mapping methods used in the past. A printed leaky-wave antenna with a sinusoidally-modulated surface reactance is designed using the procedure mentioned above. The TM-polarized antenna radiates at 30° from broadside at 10 GHz, and exhibits an experimental gain of 18.4 dB. Theoretical, simulated, and experimental results are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call