Abstract

AbstractA multimodal biometric system integrates information from multiple biometric sources to compensate for the limitations in performance of each individual biometric system. We propose an optimal framework for combining the matching scores from multiple modalities using the likelihood ratio statistic computed using the generalized densities estimated from the genuine and impostor matching scores. The motivation for using generalized densities is that some parts of the score distributions can be discrete in nature; thus, estimating the distribution using continuous densities may be inappropriate. We present two approaches for combining evidence based on generalized densities: (i) the product rule, which assumes independence between the individual modalities, and (ii) copula models, which consider the dependence between the matching scores of multiple modalities. Experiments on the MSU and NIST multimodal databases show that both fusion rules achieve consistently high performance without adjusting for optimal weights for fusion and score normalization on a case-by-case basis.KeywordsBiometric recognitionmultimodal biometric systemsfusionGaussian copula modelsGeneralized densitiesNeyman-Pearson theorem

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call