Abstract

Mismatch between enrollment and test conditions causes serious performance degradation on speaker recognition systems. This paper presents a statistics decomposition (SD) approach to solve this problem. This approach decomposes the PLDA score into three components that corresponding to enrollment, prediction and normalization respectively. Given that correct statistics are used in each component, the resultant score is theoretically optimal. A comprehensive experimental study was conducted on three datasets with different types of mismatch: (1) physical channel mismatch, (2) long-term speaker characteristics mismatch, (3) near-far recording mismatch. The results demonstrated that the proposed SD approach is highly effective, and outperforms the ad-hoc multi-condition training approach that is commonly adopted but not optimal in theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.