Abstract

Let F be a field, and let Zar(F) be the space of valuation rings of F with respect to the Zariski topology. We prove that if X is a quasicompact set of rank one valuation rings in Zar(F) whose maximal ideals do not intersect to 0, then the intersection of the rings in X is an integral domain with quotient field F such that every finitely generated ideal is a principal ideal. To prove this result, we develop a duality between (a) quasicompact sets of rank one valuation rings whose maximal ideals do not intersect to 0, and (b) one-dimensional Prüfer domains with nonzero Jacobson radical and quotient field F. The necessary restriction in all these cases to collections of valuation rings whose maximal ideals do not intersect to 0 is motivated by settings in which the valuation rings considered all dominate a given local ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.