Abstract

BackgroundSize at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes. Birth weight is a composite measure, encompassing bone, fat and lean mass. These may have different determinants. The main purpose of this paper was to use anthropometry and principal components analysis (PCA) to describe maternal and newborn body composition, and associations between them, in an Indian population. We also compared maternal and paternal measurements (body mass index (BMI) and height) as predictors of newborn body composition.MethodsWeight, height, head and mid-arm circumferences, skinfold thicknesses and external pelvic diameters were measured at 30 ± 2 weeks gestation in 571 pregnant women attending the antenatal clinic of the Holdsworth Memorial Hospital, Mysore, India. Paternal height and weight were also measured. At birth, detailed neonatal anthropometry was performed. Unrotated and varimax rotated PCA was applied to the maternal and neonatal measurements.ResultsRotated PCA reduced maternal measurements to 4 independent components (fat, pelvis, height and muscle) and neonatal measurements to 3 components (trunk+head, fat, and leg length). An SD increase in maternal fat was associated with a 0.16 SD increase (β) in neonatal fat (p < 0.001, adjusted for gestation, maternal parity, newborn sex and socio-economic status). Maternal pelvis, height and (for male babies) muscle predicted neonatal trunk+head (β = 0. 09 SD; p = 0.017, β = 0.12 SD; p = 0.006 and β = 0.27 SD; p < 0.001). In the mother-baby and father-baby comparison, maternal BMI predicted neonatal fat (β = 0.20 SD; p < 0.001) and neonatal trunk+head (β = 0.15 SD; p = 0.001). Both maternal (β = 0.12 SD; p = 0.002) and paternal height (β = 0.09 SD; p = 0.030) predicted neonatal trunk+head but the associations became weak and statistically non-significant in multivariate analysis. Only paternal height predicted neonatal leg length (β = 0.15 SD; p = 0.003).ConclusionPrincipal components analysis is a useful method to describe neonatal body composition and its determinants. Newborn adiposity is related to maternal nutritional status and parity, while newborn length is genetically determined. Further research is needed to understand mechanisms linking maternal pelvic size to fetal growth and the determinants and implications of the components (trunk v leg length) of fetal skeletal growth.

Highlights

  • Size at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes

  • Study Sample Between June 1997 and August 1998, 1539 women booking consecutively into the antenatal clinic at the Holdsworth Memorial Hospital (HMH), Mysore were screened [22]. They were eligible for the study if they were not known to be diabetic before pregnancy, planned to deliver at HMH, and had a singleton pregnancy of < 32 weeks gestation, determined by their last menstrual period (LMP) or a first trimester ultrasound scan

  • Neonatal leg length was an important independent component in the babies, and pelvic diameters formed an independent component in the mothers; neither of these measurements were included in earlier principal components analysis (PCA) studies

Read more

Summary

Introduction

Size at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes. In white Caucasian populations, PCA has fairly consistently identified fat (skinfold measurements) and skeletal size (length) as the main fetal components, with maternal body fat (skinfolds, BMI) and the skeletal size (height) of both parents respectively as their strongest predictors [15,16,17]. These findings have been corroborated by studies using more sophisticated measures of parental and newborn body composition, such as dual X-ray absorptiometry (DXA) [19,20,21]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.