Abstract

Monitoring, assessing, and measuring oil spills is essential in protecting the marine environment and in efforts to clean oil spills. One of the most recent oil spills happened near Port Fourchon, Louisiana, caused by Hurricane Ida (Category 4), that had a wind speed of 240 km/h. In this regard, Earth Observation (EO) Satellite Remote Sensing (SRS) images can effectively highlight oil spills in marine areas as a “fast and no-cost” technique. However, clouds and the sea surface spectral signature complicate the interpretation of oil spill areas in the optical images. In this study, Principal Component Analysis (PCA) has been applied of Landsat-8 and Sentinel-2 SRS images to improve information from the optical sensor bands. The PCA produces an output unrelated to the main bands, making it easier to distinguish oil spills from clouds and seawater due to the spectral diversity between oil, clouds, and the seawater surface. Then, an additional step has been applied to highlight the oil spill area using PCAs with different band combinations. Furthermore, Sentinel-1 (SAR), Sentinel-2 (optical), and Landsat-8 (optical) SRS images have been analyzed with cross-sections to suppress the “look-alike” effect of marine oil spill areas. Finally, mean and high-pass filters were used for Land Surface Temperature (LST) SRS images estimated from the Landsat thermal band. The results show that the seawater value is about −17.5 db and the oil spill area shows a value between −22.5 db and −25 db; the Landsat 8 satellites thermal band 10, depicting contrast at some areas for oil spill, can be determined by the 3 × 3 and 5 × 5 Kernel High pass and the 3 × 3 Mean filter. The results demonstrate that the SRS images should be used together to improve oil spill detection studies results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call