Abstract

The basal body is a highly organized structure essential for the formation of cilia. Basal bodies dock to a cellular membrane through their distal appendages (also known as transition fibers) and provide the foundation on which the microtubules of the ciliary axoneme are built. Consequently, basal body position and orientation dictates the position and orientation of its cilium. The heart of the basal body is the mother centriole, the older of the two centrioles inherited during mitosis and which is comprised of nine triplet microtubules arranged in a cylinder. Like all ciliated organisms, mice possess basal bodies, and studies of mouse basal body structure have made diverse important contributions to the understanding of how basal body structure impacts the function of cilia. The appendages and associated structures of mouse basal bodies can differ in their architecture from those of other organisms, and even between murine cell types. For example, basal bodies of immotile primary cilia are connected to daughter centrioles, whereas those of motile multiciliated cells are not. The last few years have seen the identification of many components of the basal body, and the mouse will continue to be an extremely valuable system for genetically defining their functions.

Highlights

  • The basal body is a highly organized structure essential for the formation of cilia

  • Murine basal bodies contain triplet microtubules The nine triplet microtubules that make up the barrel of the basal body are named A, B, and C from internal to external

  • The doublet microtubules of the ciliary axoneme are contiguous with the basal body A- and B-tubules, whereas the C-tubule terminates within the distal centriole or in a region between the basal body and the cilium called the transition zone [12,13,14,15,16]

Read more

Summary

Introduction

The basal body is a highly organized structure essential for the formation of cilia. Basal bodies dock to a cellular membrane through their distal appendages ( known as transition fibers) and provide the foundation on which the microtubules of the ciliary axoneme are built. The doublet microtubules of the ciliary axoneme are contiguous with the basal body A- and B-tubules, whereas the C-tubule terminates within the distal centriole or in a region between the basal body and the cilium called the transition zone [12,13,14,15,16].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.